Wavefunctions and Probability Density
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 Think what might happen to the probability
ﬂ_enhsity when the quantum number n is very
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Orthogonality of wavefunctions
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where T = mx//. As sinosinp = (1/2)[cos(a—B) —cos(a+B)]. we find
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The Curvature of a
‘Wavefunction

@ The average kinetic
energy of a particle
can be ‘determined’
by noting its
average curvature.,




The Solutions for the Particle
‘Ina 'Box’

@ The first five
normalized
wavefunctions of a
particle in a box.

@ Successive
functions possess
one more half wave

and a shorter

wavelength. Pay attention to the increasing
curvatures, this being a reflection of
Kinetic energy increasing as a function
of the quantum number n.




The Hamiltonian for the particle inside the box is the kinetic energy operator.
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Applying the Hamiltonian within the Schrédinger equation implies that we find the energy for the particle-in-a-box by
taking the second derivative of the wavefunction and multiplying by some constants.

Recall from calculus that the second derivative is a measure of the curvature of a function. When the wavefunction has the
correct energy. 1.e.. the correct curvature, the boundary conditions are met. Thus looking at the curvature of a particle-in-a-
box wavefunction can help in finding correct energy eigenvalues.

Also, since the kinetic energy operator is proportional to the second derivative, the curvature of a particle's wavefunction is

a measure of the particle's kinetic energy.



Make sure you know how to find
the expectation values as
discussed In class!
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